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Abstract

Most existing GAN inversion methods aim to strike a good
trade-off between fidelity and editability. However, a pre-
trained GAN latent space only encodes information from in-
domain regions while the input image often involves out-
of-domain regions. As a result, extending the original latent
space by encoding out-of-domain regions to improve fidelity
will negatively affect the editability of the model. To address
this, we propose a novel dual dynamic hypergraph-driven fu-
sion (DHFusion) method, which consists of a dual dynamic
hypergraph-CAM network (DH-Net) and an editing-driven
fusion network (EF-Net). Specifically, DH-Net first employs
the differential activations between the initial inverted im-
age and the initial edited image to dynamically construct
two hypergraphs from the perspectives of short-term and
long-term spatial dependencies. In this way, high-order re-
lationships between attribute-relevant regions are effectively
modeled, enabling our model to generate an accurate and
comprehensive edit-aware mask for locating the edited re-
gions. Subsequently, EF-Net leverages this mask as weights
to perform multi-scale feature-level fusion between the orig-
inal image and the initial edited image, generating high-
fidelity edited images with the reduced ghosting effect. Ex-
tensive quantitative and qualitative experiments demonstrate
that our method outperforms several state-of-the-art methods.
Our work clearly shows the potential of dual dynamic hyper-
graphs for GAN inversion.

Introduction
Over the past few years, image attribute editing, which aims
to manipulate the desired attributes of an image, has received
considerable attention. With the advance of generative ad-
versarial networks (GANs) (Goodfellow et al. 2014), many
efforts have been devoted to performing image attribute edit-
ing based on the controllability of powerful GAN models
(such as StyleGAN (Karras, Laine, and Aila 2019; Karras
et al. 2020)). Accordingly, a variety of GAN inversion meth-
ods (Xia et al. 2022) have been developed.

Traditional GAN inversion methods (Richardson et al.
2021; Tov et al. 2021) project the input images into the
latent space of StyleGAN (i.e., the W space) and achieve
good editing performance by varying the latent code. Un-
fortunately, these methods easily suffer from information
loss due to the low bit-rate latent code. Thus, the fidelity
of the reconstructed images is severely affected. To address
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Figure 1: Visualization of (a) the original images; (b) the
masks generated by Diff-CAM; (c) the final edited results
by Diff-CAM; (d) the masks generated by our method; (e)
the final edited results by our method.

this, some methods (Roich et al. 2022) fine-tune the gen-
erator. Although they can improve the inversion results of
in-domain regions (such as facial and hair regions), the gen-
erator may fail to reconstruct out-of-domain regions (such
as the complex background). A few methods (Wang et al.
2022; Zhang et al. 2024) incorporate the features extracted
from the input image into the generator, enhancing the capa-
bility of pre-trained GAN models for out-of-domain inver-
sion. Such a way improves the reconstruction quality of the
edited image but sacrifices the editability. Thus, these meth-
ods still cannot achieve a good trade-off between fidelity and
editability.

Recently, some methods (such as Diff-CAM (Song et al.
2022)) have been proposed to combine the edited regions
from the inversion with the unedited regions from the origi-
nal input. They introduce a differential activation module to
train an attribute classifier and generate a mask for localiz-
ing edited regions. Based on the generated mask, the original
image and the initial edited image are directly fused as the
edited result.

The above methods mainly suffer from two main draw-
backs. First, they perform attribute classification and obtain
the activation map by using Grad-CAM (Selvaraju et al.
2017). Nevertheless, these methods do not fully exploit
the relationships between different attribute-relevant regions
and thus they can easily generate inaccurate or incomplete
masks, leading to unsatisfactory editing results. Second, by
blending the original and edited images with the generated
mask at the pixel level, these methods often cause ghosting



effects, even with the employment of a deghosting network.
Some failed cases are shown in Figures 1(b) and 1(c).

To address the above problems, in this paper, we propose
a novel dual dynamic hypergraph-driven fusion (DHFusion)
method for GAN inversion. DHFusion mainly consists of
a dual dynamic hypergraph-CAM network (DH-Net) and
an editing-driven fusion network (EF-Net) for accurate and
comprehensive edited region localization and high-quality
edited image generation with the reduced ghosting effect, re-
spectively. Specifically, DH-Net dynamically constructs two
hypergraphs to capture high-order correlations from the per-
spectives of short-term and long-term spatial dependencies
and generates an edit-aware mask. Based on the generated
mask, EF-Net performs multi-scale feature-level fusion be-
tween the original image and the initial edited image and
offers multi-scale fused feature maps. This can facilitate the
generation of a high-fidelity edited image. Some generated
masks and edited results by our method are given in Figures
1(d) and 1(e), respectively.

In summary, the contributions of this paper are as follows:
• We propose a novel method for GAN inversion, which

leverages an edit-aware mask to fuse the original image
and the initial edited image at the feature level, achieving
an excellent trade-off between fidelity and editability.

• We propose DH-Net based on dual dynamic hypergraph
construction, generating an accurate and comprehensive
edit-aware mask. Moreover, we design EF-Net to per-
form multi-scale feature-level fusion between the orig-
inal image and the initial edited image. In this way,
our method can effectively preserve out-of-domain re-
gions while achieving high editing quality with a reduced
ghosting effect.

• Qualitative and quantitative experiments validate the su-
periority of our method against several state-of-the-art
GAN inversion methods.

Related Work
GAN Inversion. Existing GAN inversion methods can be
roughly divided into three categories: optimization-based,
encoder-based, and hybrid methods. Optimization-based
methods (Abdal, Qin, and Wonka 2020; Zhu et al. 2020b)
directly optimize the latent code by minimizing the recon-
struction loss for each image. Although these methods can
reconstruct high-fidelity images, they easily suffer from poor
editability and slow inference time. Encoder-based methods
(Tov et al. 2021; Richardson et al. 2021) train an encoder
to map the input images into the latent space. Thus, they
can perform attribute editing operations in the latent space.
Compared with optimization-based methods, encoder-based
methods offer better editability and faster inference time.
But their reconstruction quality may be poor. Hybrid meth-
ods (Zhu et al. 2016, 2020a) first utilize an encoder to ob-
tain a latent code and then optimize this latent code. They
can achieve a good balance between inference time and re-
construction quality. Recently, some methods (Alaluf et al.
2022) make use of the hypernetwork to calculate changes
in the weights of the GAN generator, improving the recon-
struction quality.

Although the above methods have progressed greatly, they
still struggle to invert out-of-domain regions. Recently, Diff-
CAM (Song et al. 2022) proposes localizing the edited re-
gion with a mask and blending them with the original im-
age, to improve image fidelity. However, the localization ca-
pability of Diff-CAM is limited, generating inaccurate or in-
complete masks. Moreover, the ghosting effect caused by
pixel-level blending still exists, even with the adoption of
a deghosting network. SAMM (Yang, Xu, and Chen 2023)
applies spatial alignment to reduce the ghosting effect. How-
ever, the generated pixel-level mask may be inaccurate when
dealing with complex out-of-domain regions.
Hypergraph Learning. Recently, hypergraph neural
network-based methods (Wadhwa et al. 2021; Han et al.
2023) have made great progress in computer vision, where
their performance relies heavily on the quality of the
constructed hypergraph structures. DHGNN (Jiang et al.
2019) introduces dynamic hypergraph construction using
K-means and K nearest neighbors (KNN). ViHGNN
(Han et al. 2023) alternately performs patch embeddings
and hypergraph construction, enhancing structure-aware
image representations. Some methods (Wadhwa et al. 2021)
employ cross-correlation between vertex features to learn
the incidence matrix.

Unlike the conventional hypergraph construction methods
that model the data structure from either short-term or long-
term dependencies, we introduce dual dynamic hypergraph
construction to combine short-term and long-term depen-
dencies. Notably, we progressively update vertex features
and the dual hypergraph structure in an alternate learning
way. Such a manner is beneficial for sufficiently establishing
high-order relationships between attribute-relevant regions.

Proposed Solution
Overview
The overview of our dual dynamic hypergraph-driven fusion
(DHFusion) method is shown in Figure 2. DHFusion con-
sists of DH-Net and EF-Net, which are trained separately.
DH-Net, consisting of a differential activation-based hyper-
graph learning (DHL) module and an edit-aware attention
(EA) module, is trained to generate an edit-aware mask. EF-
Net is trained to give the final edited result via multi-scale
feature-level fusion.

Dual Dynamic Hypergraph-CAM Network
The DHL Module The DHL module is designed to ex-
tract the relational features by exploiting high-order correla-
tions between different attribute-relevant regions. To achieve
this, we dynamically construct dual hypergraphs from the
perspectives of short-term and long-term spatial dependen-
cies. The DHL module includes three key components: 1)
differential activations; 2) dual hypergraph construction; and
3) dual dynamic hypergraph learning.
Differential Activations. We first employ an editing method
(such as pSp (Richardson et al. 2021), e4e (Tov et al. 2021))
to perform the initial inversion and editing, obtaining an ini-
tial inverted image I′ and an initial edited image T. Then we
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Figure 2: Overview of our DHFusion. DHFusion mainly consists of a dual dynamic hypergraph-CAM network (DH-Net) and
an editing-driven fusion network (EF-Net).

compute the differential activations ∆ (Song et al. 2022) as

∆ = Etrainable(I′)− Etrainable(T), (1)

where Etrainable(·) is a plain trainable encoder and ∆ ∈
RC×H×W . Here, C, H , and W denote the channel number,
height, and width of ∆, respectively.
Dual Hypergraph Construction. We consider each 1×1×
C grid of the differential activations ∆ as an initial vertex in
each hypergraph. Thus, we can transform ∆ into the initial
relational features (vertex features) X(0) ∈ RC×HW , where
the n-th vertex is represented by a feature x

(0)
n ∈ RC×1 and

HW denotes the total number of vertices.
Short-Term Spatial Dependencies. We construct the short-
term incidence matrix HS based on K-nearest neighbors.
Technically, we first use the KNN algorithm to select the K
nearest vertices to each vertex (using the cosine distance)
and filter out neighbors whose distances are greater than a
threshold for each vertex, obtaining the short-term incidence
matrix.

Mathematically, the initial short-term incidence matrix
H

(1)
S ∈ RHW×HW is constructed as

H
(1)
S = FS(X

(0),K, ϵ), (2)

where ϵ is the threshold to filter out neighbors with large
distances and FS(·) denotes the short-term hypergraph con-
struction.
Long-Term Spatial Dependencies. We construct the long-
term incidence matrix HL using cross-correlation (Wadhwa
et al. 2021) between relational features, which measures the
contribution of each vertex in each hyperedge, that is,

H
(1)
L = FL(X

(0))

= Ψ(X(0))Λ(X(0))Ψ(X(0))TΩ(X(0)), (3)

where H
(1)
L ∈ RHW×HW denotes the initial long-term in-

cident matrix (we set the number of hyperedges to HW );
FL(·) denotes the long-term hypergraph construction; Ψ(·)
denotes a linear transformation; Λ(·) and Ω(·) are learnable
parameters, which learn a distance metric between the ver-
tices for the incidence matrix and determine the contribution
of each vertex on the hyperedge, respectively.
Dual Dynamic Hypergraph Learning. At the l-th iteration,
the relational features X(l−1) ∈ RC×HW from the (l−1)-th
iteration are used as the input for both short-term and long-
term hypergraph construction. Hence, the incidence matri-
ces for the short-term and long-term hypergraphs can be ob-
tained as

H
(l)
S = FS(X

(l−1),K, ϵ), (4)

H
(l)
L = FL(X

(l−1)). (5)

Then, we add H
(l)
S and H

(l)
L to obtain the fused incidence

matrix H(l).
Based on H(l) ∈ RHW×HW , we apply a general hy-

pergraph convolutional layer (Feng et al. 2019) to aggre-
gate high-order structure information and then enhance rela-
tional feature representations. The enhanced relational fea-
tures X̃(l) ∈ RC×HW can be obtained as

X̃(l) = HC(X(l−1),H(l)) (6)

= σ(D−1/2
v H(l)WD−1

e (H(l))TD−1/2
v X(l−1)Θ),

where Dv , De, and W represent the diagonal matrices of
vertex degrees, edge degrees, and edge weights, respec-
tively; Θ denotes the learnable parameters of the hypergraph
convolutional layer that are shared during each iteration; σ
is an activation function (we use an exponential linear unit
(ELU) (Clevert, Unterthiner, and Hochreiter 2020)); HC(·)
denotes the hypergraph convolutional operation.



At the end of each iteration, we leverage an edit-aware
attention (EA) module (see details in next Section) to com-
pute an edit-aware mask M(l) and output the edit-aware re-
lational features X(l).

To train the model, we append a classifier (a global av-
erage pooling (GAP) layer, followed by a fully-connected
(FC) layer and a softmax function) after the output of the
last iteration X(L) (L denotes the total number of iterations),
and generate a vector ŷ = {ŷ1, ŷ2, . . . , ŷc} that indicates the
classification probabilities for each editing attribute, where
c is the number of attributes.

Edit-Aware Attention (EA) Module Inspired by ABN
(Fukui et al. 2019), we design an EA module to enable the
model to focus on the edited regions and generate an edit-
aware mask. The EA module takes the enhanced relational
features X̃(l) ∈ RC×HW as the input and outputs the edit-
aware relational features X(l) ∈ RC×HW , an edit-aware
mask M(l) ∈ RH×W , and an output vector ŷ(l)

EAM ∈ Rc of a
classifier. Note that, at each iteration, the input features X̃(l)

are transformed into the spatial features F̃(l) ∈ RC×H×W

and the edit-aware spatial features F(l) ∈ RC×H×W are
transformed back into the edit-aware relational features X(l)

as the output.
For the input spatial features F̃(l), we first use a self-

attention block (Vaswani et al. 2017) to capture potential
relationships between each position comprehensively. The
output of the self-attention block is denoted as F

(l)
self ∈

RC×H×W . Then, F(l)
self is further fed into two branches: the

attention branch and the classification branch.
For the attention branch, a convolutional layer is used

to adjust the number of channels of F
(l)
self to 1, followed

by a Sigmoid activation function, obtaining spatial attention
weights W

(l)
S ∈ R1×H×W . For the classification branch, a

classifier takes F(l)
self as the input and generates the classifica-

tion prediction vector ŷ(l)
EAM.

Based on the above, W(l)
S can be used to highlight the

edited regions of the spatial features:

F(l) = F̃(l) +W
(l)
S ⊙ F̃(l). (7)

where ‘⊙’ denotes the Hadamard product.
Meanwhile, we perform min-max normalization on the

spatial weights W
(l)
S to obtain an edit-aware mask M(l).

During the model inference stage, we use M(L) obtained
from the last iteration as the final edit-aware mask predicted
by DH-Net.

Loss Function of DH-Net The loss function for optimiz-
ing DH-Net is defined as

LDH-Net = Lcls + λEAMLEAM + λmaskLmask, (8)
where Lcls and LEAM are cross-entropy losses, which enable
the model to generate edit-aware masks by training classi-
fiers; Lmask is the L1 loss that prevents the size of the gen-
erated edit-aware mask from excessive coverage of out-of-
domain regions; λEAM and λmask are the balancing parame-
ters.

Editing-Driven Fusion Network
As illustrated in Figure 2, our EF-Net consists of an encoder,
a decoder, and a pre-trained StyleGAN2 generator. First, we
input the original image I and the initial edited image T
into the encoder to obtain three different scales of encoded
features (including coarse, medium, and fine features). Then,
M(L) is upsampled to three different scales {Mi}3i=1 (i.e.,
16 × 16, 32 × 32, and 64 × 64), corresponding to different
feature scales respectively. Hence, the fused features can be
obtained as

Ffusion
i = FT

i ⊙Mi + FI
i ⊙ (1−Mi), i = 1, 2, 3 (9)

where Ffusion
1 , Ffusion

2 , and Ffusion
3 denote the fused features

at the coarse, medium, and fine levels, respectively; FI
i and

FT
i denote the encoded features for the original image and

the initial edited image at one scale, respectively.
Subsequently, we use a decoder to decode the fused fea-

tures into the final edited image. Meanwhile, {Ffusion
i }3i=1

is mapped to latent code w ∈ R18×512, which are then fed
into the generator to generate ghosting-free features. We ag-
gregate the features from the generator with those from the
decoder in a hierarchical manner to give the final results.
Loss Function of EF-Net. To encourage EF-Net to have the
ability of deghosting, inspired by Diff-CAM, we generate a
set of paired data {Itrain, I}, where Itrain is obtained by

Itrain = T⊙Mtrain + I⊙ (1−Mtrain), (10)

and each element in Mtrain is computed by

Mtrain(i, j) =

{
M(L)(i, j) if M(L)(i, j) ≤ 0.5
1−M(L)(i, j) if M(L)(i, j) > 0.5,

(11)
During training, EF-Net solely takes Itrain as the input and

generates the output image Irec through the decoder, while
the generator is frozen. In this way, EF-Net can be trained
by using I as the ground truth, enabling the model to have
the ability to remove ghosting.

To obtain a high-fidelity edited image after feature fusion,
we compute the L2 loss (L2) and the LPIPS loss (LLPIPS)
(Zhang et al. 2018) between Irec and I. In addition, we cal-
culate the identity loss Lid = 1− ⟨F(Irec),F(I)⟩, where F(·)
denotes a pre-trained ArcFace (Deng et al. 2019) for the face
domain and a pre-trained ResNet-50 model (Tov et al. 2021)
for other domains. Thus, the loss function of EF-Net is

LEF-Net = L2 + λLPIPSLLPIPS + λidLid, (12)

where λLPIPS and λid are the balancing parameters.

Experiments
Experimental Settings
Datesets. We mainly evaluate our method on the face do-
main. We adopt the FFHQ dataset (Karras, Laine, and Aila
2019) for training and the CelebA-HQ dataset (Karras et al.
2017) for testing. The training set and the test set contain
70,000 and 30,000 human facial images, respectively. Each
image has the size of 1024 × 1024.
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Figure 3: Image attribute editing quality comparison between DHFusion and several state-of-the-art methods.

Implementation Details. For short-term hypergraph con-
struction, the values of K and ϵ are set to 25 and 0.5, re-
spectively. The number of iterations L is set to 3. The values
of λEAM and λmask in Eq. (8) are empirically set to 0.1 and
0.01, respectively. The values of λLPIPS and λid in Eq. (12)
are empirically set to 0.8 and 0.1, respectively. The input
size and output size of EF-Net are 256 × 256 and 1024 ×
1024, respectively.

To evaluate the realism of the generated images, we use
Fréchet Inception Distance (FID) (Heusel et al. 2017) to
measure the distribution distance between the original im-
age dataset and the edited dataset generated by each model,
where five facial editing attributes (“Beard”, “Bushy eye-
brows”, “Eyeglasses”, “Age”, and “Smiling”) are used to
take the average. We also use ArcFace (Deng et al. 2019)
to extract the features from the original image and the edited
image and calculate their cosine similarity as the identity
similarity (ID). The above metrics are evaluated on the first
1,000 images of CelebA-HQ.

Comparison with State-of-the-Art Methods
To show the superiority of our method, we compare our
DHFusion with state-of-the-art GAN inversion methods, in-
cluding pSp (Richardson et al. 2021), e4e (Tov et al. 2021),
HFGI (Wang et al. 2022), HyperStyle (Alaluf et al. 2022),
Diff-CAM (Song et al. 2022), SAMM (Yang, Xu, and Chen
2023), and SDIC (Zhang et al. 2024).
Quantitative Evaluation. We quantitatively compare our
method with state-of-the-art GAN inversion methods using
FID and ID as evaluation metrics. Meanwhile, we conduct
a User Study to evaluate the editing results (Zhang et al.
2024). In addition, we compare the inference time obtained
by different methods. The results are shown in Table 1.
Among all the competing methods, our method obtains the
best FID, ID, and User Study performance at the comparable
inference time.

Table 1: Comparison with state-of-the-art methods.

Method FID ↓ ID (%) ↑ Time (s) ↓ User Study (%) ↑
pSp 50.878 79.783 0.090 28.668
e4e 48.782 78.146 0.087 22.000

HFGI 39.524 83.822 0.175 8.666
HyperStyle 39.095 80.450 0.280 16.666
Diff-CAM 26.656 91.841 0.244 47.334

SAMM 32.267 87.040 0.186 14.666
SDIC 35.521 88.508 0.280 21.998
Ours 18.875 98.803 0.253 59.334

Qualitative Evaluation. As shown in Figure 3, we can ob-
serve that, compared with other methods, mask-based meth-
ods (i.e., Diff-CAM, SAMM, and our DHFusion) more ef-
fectively preserve out-of-domain regions when editing faces.
In comparison to Diff-CAM, the edited images generated by
our model show better editing performance. This is because
our method can more accurately and comprehensively lo-
cate the edited region and greatly alleviate the ghosting ef-
fect during image editing.

Conclusions
In this paper, we propose a novel DHFusion method for
GAN inversion. Our method is comprised of DH-Net and
EF-Net. DH-Net first generates an accurate and comprehen-
sive edit-aware mask to indicate the edited regions based on
the differential activations between the initial inverted im-
age and the initial edited image. Based on the generated
mask, EF-Net then blends the original image with the ini-
tial edited image at the multi-scale feature level. Experimen-
tal results demonstrate that our method gives a final edited
image that preserves out-of-domain regions while maintain-
ing high editing quality with reduced ghosting effect. This
shows our method achieves a favorable balance between fi-
delity and editability.
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